Стабилизаторы мембран тучных клеток описание фармакологической группы в Энциклопедии РЛС

Стабилизаторы мембран тучных клеток описание фармакологической группы в Энциклопедии РЛС

Клеточная мембрана

Кле́точная мембра́на (также цитолемма, плазмалемма, или плазматическая мембрана) — эластическая молекулярная структура, состоящая из белков и липидов. Отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность; регулирует обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определённые условия среды.

Содержание

  • 1 Основные сведения
  • 2 История исследования
  • 3 Функции
  • 4 Структура и состав биомембран
  • 5 Мембранные органеллы
  • 6 Избирательная проницаемость
  • 7 См. также
  • 8 Примечания
  • 9 Литература
  • 10 Ссылки

Основные сведения

Клеточная стенка, если таковая у клетки имеется (обычно есть у растительных клеток), покрывает клеточную мембрану.

Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») части. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Мембраны — структуры инвариабельные, весьма сходные у разных организмов. Некоторое исключение составляют, пожалуй, археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет 7—8 нм.

Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погружённые одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов.

История исследования

В 1925 году Гортер и Грендель с помощью осмотического удара получили так называемые «тени» эритроцитов — их пустые оболочки. Тени сложили в стопку и определили площадь их поверхности. Затем с помощью ацетона выделили из оболочек липиды и определили количество липидов на единицу площади эритроцита — этого количества хватило на сплошной двойной слой. Хотя этот эксперимент привёл исследователей к правильному выводу, ими было допущено несколько грубых ошибок — во-первых, с помощью ацетона нельзя выделить абсолютно все липиды, а во-вторых, площадь поверхности была определена неправильно, по сухому весу. В данном случае минус на минус дал плюс, соотношение определяемых показателей случайно оказалось верным и был открыт липидный бислой.

Эксперименты с искусственными билипидными пленками показали, что они обладают высоким поверхностным натяжением, гораздо большим, чем в клеточных мембранах. То есть в них содержится что-то, что снижает натяжение — белки. В 1935 году Даниэлли и Доусон представили научному сообществу модель «сендвича», которая говорит о том, что в основе мембраны лежит липидный бислой, по обеим сторонам от которого находятся сплошные слои белков, внутри бислоя ничего нет. Первые электронно-микроскопические исследования 1950-х годов подтвердили эту теорию — на микрофотографиях были видны 2 электронно-плотных слоя — белковые молекулы и головки липидов и один электронно-прозрачный слой между ними — хвосты липидов. Дж. Робертсон сформулировал в 1960 году теорию унитарной биологической мембраны, в которой постулировалось трёхслойное строение всех клеточных мембран.

Но постепенно накапливались аргументы против «бутербродной модели»:

  • накапливались сведения о глобулярности плазматической мембраны;
  • оказалось, что структура мембраны при электронной микроскопии зависит от способа её фиксации;
  • плазматическая мембрана может различаться по структуре даже в одной клетке, например в головке, шейке и хвосте сперматозоида;
  • «бутербродная» модель термодинамически не выгодна — для поддержания такой структуры нужно затрачивать большое количество энергии, и протащить вещество через мембрану очень сложно;
  • количество белков, связанных с мембраной электростатически, очень небольшое, в основном белки очень тяжело выделить из мембраны, так как они погружены в неё.

Всё это привело к созданию в 1972 году С. Д. Сингером (S. Jonathan Singer) и Г. Л. Николсоном (Garth L. Nicolson) жидкостно-мозаичной модели строения мембраны. Согласно этой модели белки в мембране не образуют сплошной слой на поверхности, а делятся на интегральные, полуинтегральные и периферические. Периферические белки действительно находятся на поверхности мембраны и связаны с полярными головками мембранных липидов электростатичесткими взаимодействиями, но никогда не образуют сплошной слой. Доказательствами жидкостности мембраны служат методы FRAP, FLIP и соматическая гибридизация клеток, мозаичности — метод замораживания-скалывания, при котором на сколе мембраны видны бугорки и ямки, так как белки не расщепляются, а целиком отходят в один из слоёв мембраны.

Функции

  • Барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой[1] . Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • Транспортная — через мембрану происходит транспорт веществ в клетку и из клетки [1] . Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов.
    Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортёры) и белки-каналы или путём эндоцитоза.
    При пассивном транспорте вещества пересекают липидный бислой без затрат энергии по градиенту концентрации (градиент концентрации указывает направление увеличения концентрации) путём диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.
    Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивает в клетку ионы калия (K + ) и выкачивает из неё ионы натрия (Na + ).
  • Матричная — обеспечивает определённое взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.
  • Механическая — обеспечивает автономность клетки, её внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечении механической функции имеют клеточные стенки, а у животных — межклеточное вещество.

  • Энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки.
  • Рецепторная — некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).
    Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.
  • Ферментативная — мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
  • Осуществление генерации и проведения биопотенциалов.
    С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К + внутри клетки значительно выше, чем снаружи, а концентрация Na + значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.
  • Маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединёнными к ним разветвлёнными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.
Читайте также:  Сухая смесь Nutricia Нутризон; отзывы

Структура и состав биомембран

Мембраны состоят из липидов трёх классов: фосфолипиды, гликолипиды и холестерол. Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим — более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку.

Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются. Рядом с белками находятся аннулярные липиды — они более упорядочены, менее подвижны, имеют в составе более насыщенные жирные кислоты и выделяются из мембраны вместе с белком. Без аннулярных липидов белки мембраны не работают.

Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, в наружном содержатся преимущественно фосфатидилинозитол, фосфатидилхолин, сфингомиелины и гликолипиды, во внутреннем — фосфатидилсерин, фосфатидилэтаноламин и фосфатидилинозитол. Переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп) затруднён, но может происходить спонтанно, примерно раз в 6 месяцев или с помощью белков-флиппаз и скрамблазы плазматической мембраны. Если в наружном слое появляется фосфатидилсерин, это является сигналом для макрофагов о необходимости уничтожения клетки.

Мембранные органеллы

Это замкнутые одиночные или связанные друг с другом участки цитоплазмы, отделённые от гиалоплазмы мембранами. К одномембранным органеллам относятся эндоплазматическая сеть, аппарат Гольджи, лизосомы, вакуоли, пероксисомы; к двумембранным — ядро, митохондрии, пластиды. Строение мембран различных органелл отличается по составу липидов и мембранных белков.

Избирательная проницаемость

Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жирные кислоты, глицерол и ионы, причем сами мембраны в известной мере активно регулируют этот процесс — одни вещества пропускают, а другие нет. Существует четыре основных механизма для поступления веществ в клетку или вывода их из клетки наружу: диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, то есть не требуют затрат энергии; два последних — активные процессы, связанные с потреблением энергии.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами — интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.

Функция

Активный транспорт веществ

Общая и избирательная диффузия небольших молекул и ионов

Регулирование транспорта ионов и продуктов метаболизма внутри клеток

Все виды мембран

Миелин

Генерация нервного импульса

Мембраны нервных клеток

Преобразование световой энергии в химическую энергию аденозинтрифосфорной кислоты (АТФ)

Преобразование энергии биологического окисления в химическую энергию макроэргических фосфатных связей в молекуле аденозинтрифосфорной кислоты (АТФ)

Фагоцитоз, пиноцитоз, антигенные свойства

Мембраны специализированных клеток

Покрывая клетку и отделяя её от окружающей среды, Б. м. обеспечивают морфологическую целостность клеток и субклеточных частиц, их прочность и эластичность. Поддерживая неравномерное распределение ионов калия, натрия, хлора и др. между протоплазмой и окружающей средой, они способствуют появлению разности биоэлектрических потенциалов. Свойства Б. м. в значительной степени определяют генерирование и проведение возбуждения как в нервных и мышечных клетках, так и в местах контакта между ними, т. е. в синаптических окончаниях (см. Синапсы). Б. м. митохондрий служат местом строго упорядоченного расположения ферментов, участвующих в синтезе богатых энергией соединений.

Функциональные свойства Б. м. тесно связаны с их структурной организацией и в значительной степени определяются ею. Ещё в 1902, изучая проницаемость клеточных мембран, немецкий учёный Э. Овертон заметил, что через мембраны легче всего проникают вещества, хорошо растворимые в липидах, и предположил наличие последних в поверхностной клеточной мембране. В 1926 американские биологи Э. Гортер и Ф. Грендел выделили из гемолизированных эритроцитов человека липиды и расположили их в виде мономолекулярного слоя на поверхности воды; общая площадь этого слоя примерно в 2 раза превышала поверхность эритроцитов. Из этого они сделали вывод, что липиды Б. м. расположены в виде бимолекулярного слоя. Поверхностное натяжение клеточной мембраны (0,1 мн/м, или дин/см) меньше натяжения слоя чистого липида (10 мн/м, или дин/см) и близко к поверхностному натяжению белков. Поэтому было предположено, что в Б. м. бимолекулярный липидный слой покрыт с двух сторон слоями белка (структура «сэндвича»). Изучение клеточной поверхности с помощью поляризационного микроскопа позволило предположить, что молекулы липидов расположены перпендикулярно, а молекулы белка — параллельно клеточной поверхности. Методом электропроводности удалось измерить электрическую ёмкость клеточной мембраны, равную 1 мкф/см 2 , и рассчитать толщину её липидного слоя, которая оказалась равной 55 . На основе всех этих данных английские биологи Л. Даниелли и Г. Даусон в 1935 предложили модель Б. м., в основных чертах удовлетворяющую современным представлениям о структуре Б. м.

Методами рентгеноструктурного анализа, электронной микроскопии, а также оптическими и биохимическими методами показано, что поверхностная клеточная мембрана и мембраны субклеточных частиц — митохондрий, ядер, микросом, лизосом и др. — имеют сходную структуру. Они состоят из бимолекулярного липидного слоя (в основном из фосфолипидов) толщиной 35 и двух нелипидных слоев толщиной 20 каждый (американский исследователь Дж. Робертсон). Внешняя поверхность многих Б. м. покрыта мукополисахаридами. Внутренняя поверхность Б. м. выстлана структурным или ферментным белком (рис. 1, 2). Предполагается, что между молекулами фосфолипидов и белка существует электростатическое притяжение. Мембраны митохондрий несколько отличаются по структуре от поверхностной клеточной мембраны (рис. 3). По-видимому, фосфолипиды и белки в составе внутренней мембраны митохондрий связаны между собой прочным гидрофобным взаимодействием и образуют комплексы («повторяющиеся единицы»), из которых построена вся мембрана.

Читайте также:  Диэнцефальный синдром — мощный удар по ЦНС из-за дисфункции гипоталамуса - Семейная клиника ОПОРА г

Значительный прогресс в представлениях о структуре и функции Б. м. достигнут при изучении их моделей — искусственных фосфолипидных мембран, состоящих из бимолекулярного слоя фосфолипидов. Физические свойства такой плёнки близки к свойствам природных Б. м.: толщина её достигает 61 , а электрическая ёмкость 1 мкф/см 2 . При добавлении в раствор, омывающий искусственную мембрану, небольшого количества белка электрическое сопротивление её резко уменьшается (

в 1000 раз), приближаясь к электрическому сопротивлению природных Б. м. При определённых условиях в такой «реконструированной» мембране могут возникать электрические колебания, по амплитуде, длительности и условиям возникновения напоминающие электрические колебания в нервном волокне при возбуждении. Добавление в раствор, омывающий эту мембрану, антибиотиков типа валиномицина, грамицидина и др. вызывало появление избирательной проницаемости для ионов калия и натрия. Исследования Б. м. ведутся интенсивно; в ближайшем будущем можно ожидать полной расшифровки их структуры и функции.

Лит.: Руководство по цитологии, т. 1, М.—Л., 1965, гл. 2; Робертис Э. де, Новинский В., Саэс Ф., Биология клетки, пер. с англ., М., 1967; Робертсон Дж., Мембрана живой клетки, в сборнике: Структура и функция клетки, пер. с англ., М., 1964; Finean J. В., The molecular organization of cell membranes, «Progress in Biophysics and Molecular Biology», 1966, v. 16, p. 143—70.

В. Ф. Антонов.

Рис. 1. Схема строения биологической мембраны. Показан бимолекулярный липидный слой, окруженный с двух сторон монослоями белка. Кружками обозначены полярные гидрофильные группы молекулы, а чёрточками — углеводородные гидрофобные цепочки. В некоторых точках непрерывность мембран нарушается полярными порами, по которым вещества диффундируют в клетку (по Л. Даниелли и Г. Даусону).

Рис. 2. Мембраны двух соседних нервных клеток (электронный микроскоп, увелич. в 400 000 раз). Каждая мембрана имеет толщину 75 и видна в виде двух тёмных полос, разделённых более светлой полосой, толщиной 35 . Щель между клетками достигает 150 . Две тёмные полосы соответствуют белковому слою модели Даниелли и Даусона, а светлая полоса между ними — липидному слою.

Рис. 3. Схема распределения мембранных элементов клетки. Построена на основе электронномикроскопической картины среза эпителиальной клетки кишечника: 1 — поверхностная мембрана (каёмчатая), через которую происходит всасывание; 2 — мембрана десмосомы — места контакта с др. клеткой; 3 — парная поверхностная мембрана; 4 — мембрана митохондрий; 5 — мембрана эндоплазматической сети; 6 — мембраны аппарата Гольджи; 7 — ядерные мембраны.

Мембраны клеток эукариотов

Строение клеточных мембран

Одна из главных особенностей эукариотических клеток — достаточно сложное строение внутриклеточных мембран.

Мембраны окружают не только цитоплазму, но и ядро, митохондрии и пластиды, ими образованы лабиринты эндоплазматического ретикулума (ЭР) и кучки сплющенных пузырьков, из которых состоит комплекс Гольджи. Мембраны окружают также лизосомы, пероксисомы и большие вакуоли.

Все эти окружённые мембранами структуры отвечают определённым компрантментам, которые участвуют в те хили иных метаболлических процессах и циклах. Некоторые химические реакции, в частности световые реакции фотосинтеза в хлоропластах или окислительное фосфорилирование в процессе дыхания в митохондриях, происходят на самих мембранах. Тут же, на мембранах, располагаются и рецепторные участки для распознавания внешних стимулов (гормонов и других химических веществ), поступающих из окружающей среды или из других частей самого организма.

Именно плазматическая мембрана, окружающая каждую клетку, обеспечивает сохранение существенных отличий между содержимым клетки и внешней средой. Значит, без мембран существование клетки невозможно.

Готовые работы на аналогичную тему

  • Курсовая работа Мембраны клеток эукариотов 410 руб.
  • Реферат Мембраны клеток эукариотов 250 руб.
  • Контрольная работа Мембраны клеток эукариотов 240 руб.

Плазматическая мембрана, или плазмалема, является наиболее постоянной, основной, универсальной для всех клеток системой поверхностного апарата.

Она представляет собой тонкую (6 – 10 нм), но достаточно плотную плёнку, которая покрывает всю клетку.

Плазматическая мембрана образована упорядоченно расположенными молекулами фосфолипидов и белков. Вместе они удерживаются благодаря нековалентным связям.

Плазмалема образована двумя рядами липидов. Их молекулы расположены так, что в глубине мембраны находятся их неполярные гидрофобные концы, а полярные гидрофильные концы сориентированы как к внешней, так и к внутренней среде.

Липидный слой не сплошной. В отдельных местах мембрану пронизывают белковые молекулы, образующие гидрофильные поры: сквозь них проникают водорастворимые вещества. Другие молекулы белка расположены на внешней или на внутренней стороне мембраны.

Задай вопрос специалистам и получи
ответ уже через 15 минут!

На поверхности всех эукариотических клеток находятся углеводы. Они ковалентно связаны с мембранными белками (гликопротеидами) и меньше – с липидами (гликолипидами). Плазматические мембраны содержат по массе от 2 до 10% углеводов.

Все клеточные мембраны являются подвижными структурами. Большая часть составляющих мембран – молекулы белков, липидов, полисахаридов, ионы кальция, натрия, калия и другие способные достаточно быстро перемещаться в плоскости мембраны, изменяя своё расположение в ней, вещества. Осуществляется миграция указанных веществ как путём диффузии, так и активно, с поглощением энергии.

Мембраны динамичны – после повреждения они быстро возобновляются, а так же способны растягиваться и сжиматься во время движения клеток.

Мембраны различных видов клеток существенно отличаются и по своему химическому составу, и по содержанию в них белков, гликопротеидов, липидов и, соответственно, по характеру рецепторов, содержащихся в них. Потому каждый тип клеток характеризируется индивидуальностью, которая определяется в основном гликопротеидами. Разветвлённые цепи гликопротеидов, выступая над клеточной мембраной, распознают факторы внешней среды и в реакциях клеток на их действие.

Яйцеклетка и сперматозоид способны узнать друг друга по гликопротеидам на поверхности клетки, которые дополняют друг друга образуя единое целое. Такое взаимное узнавание – необходимый этап, который предшествует оплодотворению. Подобное явление можно наблюдать в процессе дифференциации тканей: с помощью распознающих участков на плазмалеме подобные по строению клетки способны правильно ориентироваться относительно друг друга и таким способом образуют ткани.

С узнаванием связано и регулирование транспорта молекул и ионов сквозь мембрану и иммунологический ответ, где роль антигенов играют гликопротеиды. Таким образом сахара функционируют как информационные молекулы (подобно нуклеиновым кислотам и белкам).

Мембраны содержат так же специфические рецепторы, которые транспортируют электроны, ферментные белки. Белки обеспечивают транспорт определённых молекул в клетку и из неё, осуществляют структурную связь цитоскелета с клеточными мембранами или же функционируют как рецепторы получая или преобразовывая химические сигналы окружающей среды.

Читайте также:  Подвздошная кость Компетентно о здоровье на iLive

Чёткая структурная организация и упорядоченность плазмалемы обуславливает ещё одну её жизненно важную функцию – полупроницаемость или способность выборочно пропускать в клетку и из клетки различные молекулы и ионы. Благодаря этому в клетке образуется определённая концентрация ионов и осуществляются процессы осмоса.

Подобные по строению мембраны как основные структурные элементы клетки ограничивают большинство её органелл. Они выполняют роль не просто физических мембран, а являются динамически функциональной поверхностью. На мембранах органелл осуществляются многочисленные биохимические процессы, такие как активное поглощение неорганических и органических веществ, синтез АТФ, превращение энергии квантов света в процессе фотосинтеза и т. п.

Транспорт веществ сквозь плазматическую мембрану

Главная функция плазматической мембраны состоит в регулировании обмена различными веществами между клеткой и окружающей средой. Существует четыре основные механизмы поступления веществ в клетку или выхода их из неё наружу: диффузия, активный транспорт, эндо- и экзоцитоз и осмос.

Во всех растворах растворённые вещества перемещаются из участка высокой концентрации в участок низшей концентрации. Этот поток веществ в сторону меньшей концентрации (транспорт по градиенту концентрации) существует до тех пор, пока концентрации веществ в обоих участках не выровняются. Определение

Диффузия (диффузионное перемещение веществ) – это перемещение веществ под влиянием градиента концентраций.

Скорость диффузии сквозь мембрану в основном зависит от размера молекулы и её относительной растворимости в жирах (чем меньше молекула, чем быстрее она растворяется в липидах, тем легче она диффундирует сквозь мембрану.

Маленькие неполярные молекулы легко растворяются в липидном слое мембраны, проходят сквозь неё и оказываются с другой стороны мембраны. Незаряженные молекулы небольших размеров (углекислый газ, этанол, мочевина) проходят сквозь мембрану быстро, а глюкоза, аминокислоты, кислоты, глицерины – медленно.

Вода легко диффундирует сквозь липидный слой, несмотря на то, что молекулы воды плохо растворяются в жирах. Это частично объясняется тем, что молекулы воды небольшие.

Для всех заряженных молекул (ионов), независимо от их размера, липидные слои плазматической мембраны служат серьёзным препятствием для проникновения в клетку.

За перенесение различных полярных молекул, таких, как ионы, сахара, аминокислоты, нуклеотиды и многие другие метаболиты, сквозь клеточные мембраны отвечают специфические белки, которые называются мембранными транспортными белками.

Каждое конкретное химическое соединение клетки транспортирует определённый белок. Такие специализированные транспортные белки способны соединяться с молекулой или ионом и без затрат энергии, пассивно, транспортировать их сквозь мембрану по градиенту концентрации. Этот процесс, который называется облегчённой диффузией, является главным механизмом выборочной проницательности мембран.

Активный транспорт веществ в отличие от облегчённой диффузии осуществляется против градиентов их концентрации, то есть вещества переходят из участка низкой концентрации в участок высшей концентрации. В этом случае для перенесения протонов или неорганических ионов сквозь мембрану необходима энергия, источником которой является АТФ.

Благодаря расходу энергии необходимый растению катион калия может попасть в клетки корня даже в том случае, когда его концентрация в почвенном растворе в 100 раз ниже, чем в клеточном соке. И наоборот, менее необходимый растению катион натрия удаляется в окружающую среду даже при условии высшей концентрации в слое почвы, где растут корни.

Механизмы активного поглощения характерны только для ионов питательных элементов. Значит, клетке свойственна определённая выборочная способность к разным ионам. Другие ионы проникают в клетку соответственно градиенту их электрохимического потенциала и проницательности мембраны.

Внутрь клетки макромолекулы (белки, полисахариды, полинуклеотиды) проникают путём эндоцитоза. Различают два типа эндоцитоза:

  • фагоцитоз (поглощение твёрдых частичек);
  • пиноцитоз (поглощение жидкостей).

В процессе фагоцитоза выпячивания цитоплазмы окружают капли жидкости с плотными частичками и втягивают их вглубь цитоплазмы, где под действием ферментов они расщепляются до фрагментов, способных усвоиться клеткой

Благодаря пиноцитозу клетки могут поглощать капли жидкости. Процесс поглощения жидкостей подобен фагоцитозу. В месте касания капли и клетки на плазматической мембране образуется впячивание в виде канальца, который заполняется жидкостью. Потом он отшнуровывается и попадает в цитоплазму, где мембранные стенки пузырька распадаются, а содержимое освобождается. Благодаря такому процессу клетки могут поглощать как большие молекулы, так и различные ионы, которые не способны проникнуть сквозь мембрану, потому что поры для них очень малы.

Путём фаго- и пиноцитоза осуществляется питание гетеротрофных протист, защитные реакции высших организмов (поглощение лейкоцитами чужеродных частичек), транспорт веществ (всасывание белков из первичной мочи в клетках почечных канальцев).

Процесс, противоположный эндоцитозу, — экзоцитоз (экзо – снаружи). Благодаря этому процессу из клетки содержимое пузырька выводится во внешнюю среду.

Продуцирующие гормон инсулин клетки, запаковывают его в пузырьки внутри клетки, которые потом сливаются с плазматической мембраной и открываются наружу, освобождая при этом инсулин.

Вода поглощается клеткой в основном путём осмоса.

Осмос – это диффузия воды сквозь полупроницаемую мембрану, обусловленная разницей (градиентом) концентраций внутри клетки и во внешней среде.

Если клетку поместить в гипотонический раствор, то возникает градиент водного потенциала: концентрация воды снаружи клетки будет значительно выше, чем внутри. Потому вода поступает внутрь клетки по градиенту своей концентрации и при этом мембрана выборочно пропускает лишь молекулы воды.

В гипертоническом (более концентрированному снаружи) растворе воды под действием осмотических сил выходит из клетки.

Эритроциты в гипертоническом растворе сморщиваются, а в растительной клетке наблюдается уменьшение вакуоли, и цитоплазма отстаёт от клеточной стенки (явление плазмолиза). Это явление лежит в основе увядания растений.

Движение воды сквозь мембрану при наличии градиента концентрации можно прекратить при условии действия определённого внешнего давления, которое называется осмотическое давление. Оно обуславливается стремлением молекул воды пройти сквозь полупроницаемую мембрану и выровнять концентрацию по обе стороны мембраны.

Чем больше концентрация раствора, тем больше силы нужно потратить, чтобы препятствовать проникновению воды в раствор (внутрь или наружу) сквозь полупроницаемую мембрану. Потому осмотическое давление более концентрированного раствора больше, чем разбавленного и он сильнее поглощает воду из окружающего раствора. Осмотическое давление определяется количеством частичек в единице объёма растворителя.

Поскольку уровень концентрации ионов и молекул различных соединений в растительной клетке выше, чем в окружающей естественной среде (например, в почве), то в клетке развивается всасывающая сила, благодаря которой вода поглощается снаружи. В результате клетка набухает и образуется внутреннее гидростатическое давление, направленное на клеточную стенку. Это давление имеет название тургорное давление. Ему противостоит такое же по величине механическое давление клеточной стенки (оболочки), которое направлено внутрь клетки.

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

Ссылка на основную публикацию
Средства от рубцов и шрамов как избавиться Видео
Как избавиться от шрамов на лице в домашних условиях Шрамы на лице — главная проблема красоты. Шрамы на лице разрушают...
Способы чистки организма содой от паразитов — Медицинский портал t
Сода от паразитов: варианты очистки организма в домашних условиях В то время, как мировая медицина идет вперед, все еще остаются...
Спрей и капли Снуп при беременности показания и инструкция
Снуп от насморка – можно ли беременным Когда происходит зачатие, материнский организм глобально перестраивается, а чтобы иммунная система не воспринимала...
Средства снижающие нижнее давление
какие лекарства понижают нижнее давление Отзывы какие лекарства понижают нижнее давление Болезнь делиться на 3 стадии групп риск: 1 –...
Adblock detector